Самолет на электротяге

Быстро, но недолго

Еще недавно под термином «электросамолет» понимался «более электрический самолет» — летательный аппарат с фиксированным крылом, в котором механическая и гидравлическая трансмиссия по максимуму заменялась электрической. Никаких больше трубок и тросов — всю механическую работу, как, например, приведение в движение рулей и механизацию крыла, выполняют небольшие электродвигатели-актуаторы, к которым подводится электропитание и канал для управляющего сигнала. Теперь термин наполнился новым смыслом: истинный электросамолет должен и сам двигаться на электрической тяге.

Блок из 14 литий-ионных батарей дает возможность находиться Extra 330LE (масса около 1 т) в воздухе в течение примерно 20 минут.

Разумеется, перспективы электроавиации зависят не только (и даже не столько) от авиаконструкторов, сколько от прогресса в области электротехники. Ведь самолеты, что называется, «на батарейках», существуют. Вспомогательные электромоторы на планеры ставили еще несколько десятилетий назад. А самолет Extra 330LE, впервые поднявшийся в воздух в 2016 году, уже сам таскает за собой планеры и ставит рекорды скорости. Вот только его блок из 14 мощных литий-ионных батарей и электродвигатель от Siemens позволяют этому крохе брать на борт лишь двух человек, включая пилота, и находиться в воздухе не дольше 20 минут.

Extra 330LE Один из реально летающих электрических самолетов, существующих в мире. Впервые он оторвался от земли 4 июля 2016 года. Его единственный 50-килограммовый мотор от компании Siemens имеет мощность 260 кВт. Siemens ожидает, что к 2030 году реально появление региональных самолетов, перевозящих 100 пассажиров на расстояние до 1000 км полностью на электрической тяге.

Конечно, есть проекты, в которые заложены куда более впечатляющие показатели. В сентябре прошлого года британская авиакомпания-лоукостер EasyJet объявила, что через десять лет выведет на линии полностью электрический региональный лайнер (дальность 540 км, что для внутриевропейских рейсов весьма немало) вместимостью 180 пассажиров. Партнером по проекту стал американский стартап Wright Electric, который уже построил пока двухместный летающий демонстратор. Однако на сегодняшний день энергетическая плотность самых лучших литий-ионных батарей более чем на порядок уступает углеводородному топливу. Предполагается, что к 2030 году батареи улучшат свои показатели максимум в два раза.

  • Технологии

    Монстр на экране: сверхтяжелый экранолет

  • Технологии

    Как устроен современный российский электровоз

Турбина, останься!

Намного выигрышней выглядит ситуация с топливными элементами, в которых химическая энергия топлива превращается в электрическую непосредственно, минуя процесс горения. Наиболее перспективным топливом для такого источника питания считается водород. Эксперименты с топливными элементами в качестве источника питания для электросамолета ведутся в разных странах мира (в России над проектами по созданию таких летательных аппаратов в первую очередь работает ЦИАМ, а топливные элементы для них создаются в ИПХФ РАН под руководством профессора Юрия Добровольского). Из летавших и пилотируемых концептов можно вспомнить европейский демонстратор ENFICA-FC Rapid 200FC — в нем использовались одновременно как электробатареи, так и топливные элементы. Но и эта технология нуждается еще в значительной доработке и дополнительных исследованиях.

Наиболее реальными на сегодня кажутся перспективы электросамолетов, построенных по гибридной схеме. Это означает, что движитель летательного аппарата (винт или винтовентилятор) будет приводиться в движение электромотором, а вот электричество он получит от генератора, вращаемого… газотурбинным двигателем (или другим ДВС). На первый взгляд такая схема кажется странной: от ГТД хотят отказаться в пользу электродвигателя, но не собираются этого делать.

Гибридных проектов в мире тоже уже немало, однако нас в первую очередь интересует Россия. Работы по электросамолету, в частности с гибридной схемой, велись в разных научных институтах авиационного профиля — таких, как ЦАГИ или ЦИАМ. Сегодня эти и некоторые другие учреждения объединены (с 2014 года) под эгидой Научно-исследовательского центра «Институт имени Н. Е. Жуковского», призванного стать единым мощным «мозговым трестом» отрасли. Задача комплексирования в рамках центра всех работ по электроавиации возложена на Сергея Гальперина, которого мы уже цитировали в начале статьи.

Эскиз одного из вариантов российского регионального самолета с гибридной силовой установкой (ГТД — электрогенератор — электромотор)

1. Вспомогательная силовая установка на топливных элементах
  • Водородные топливные элементы
  • Турбокомпрессор для обеспечения высотности
2. Турбовальный газотрубный двигатель
  • Для вращения генератора
  • Вспомогательное или основное энергопитание
3. Электрогенератор
  • На основе высокотмпературной сверхпроводимости при мощностях выше 500−800 кВт
4. Система передачи энергии
  • На основе высокотемпературной сверхпроводимости или кабель с жидкостным охлаждением
5. Аккумуляторные батареи
  • Буфер энергии
  • Вспомогательное или основное энергообеспечение
6. Электродвигатель
  • На основе высокотемпературной сверхпроводимости при мощностях выше 500−800 кВт

Взлет на батарейке

«Переход на электродвигатели в авиации открывает немало интересных перспектив, — говорит Сергей Гальперин, — но рассчитывать на создание коммерческого электросамолета с приличной для российских условий дальностью на чисто химических источниках энергии (батареях или топливных элементах) в ближайшем будущем не приходится: слишком разнится энергетический потенциал килограмма керосина и килограмма аккумуляторов. Гибридная схема могла бы стать разумным компромиссом. Надо понимать, что ГТД, непосредственно создающий тягу, и ГТД, который будет приводить в движение вал генератора, — это совсем не одно и то же.

Дело в том, что у самолета в ходе полета значительно изменяются энергетические потребности. На взлете авиационный двигатель развивает мощность, близкую к максимальной, а при движении на крейсерском участке (то есть большую часть полета) энергопотребление самолета снижается в 5−6 раз. Таким образом, традиционная силовая установка должна уметь работать в широком диапазоне режимов (не всегда оптимальных с точки зрения экономики) и быстро переходить от одного к другому. Ничего подобного не потребуется от ГТД в гибридной установке. Он будет подобен газовым турбинам электростанций, которые работают всегда в одном и том же, самом экономически выгодном режиме. Работают годами, без остановки».

Ce-liner Концепт полностью электрического самолета, разработанный немецким исследовательским институтом Bauhaus Luftfahrt. Авторы полагают, что прогресс в области электробатарей позволит их детищу пролетать до 1300 км на одной зарядке уже к 2030 году, а к 2040-му — до 3000 км.

С помощью генератора ГТД сможет вырабатывать энергию для непосредственного питания электродвигателей, а также для создания запаса в аккумуляторах. Помощь аккумуляторов понадобится как раз на взлете. Но поскольку работа электромоторов на взлетном режиме продлится всего несколько минут, запас энергии не должен быть очень большим и батареи на борту могут быть вполне приемлемыми по размеру и весу. У ГТД при этом никакого взлетного режима не будет — его дело спокойно вырабатывать электричество. Таким образом, в отличие от авиадвигателя ГТД в гибридном электросамолете будет менее мощным, более надежным и экологичным, проще по конструкции, а значит, дешевле и, наконец, будет обладать большим ресурсом.

Дуем на крыло

При этом переход на электродвигатели открывает перспективы принципиальных новшеств в конструкции гражданских самолетов будущего. Одна из наиболее обсуждаемых тем — создание распределенных силовых установок. Сегодня классическая схема компоновки лайнера предполагает две точки приложения тяги, то есть два, редко четыре, мощных двигателя, висящих на пилонах под крылом. В электросамолетах рассматривается схема размещения большого числа электродвигателей вдоль крыла, а также на его концах. Зачем это нужно?

Дело опять же в разнице взлетного и крейсерского режимов. На взлете при малой скорости набегающего потока летательному аппарату для создания подъемной силы необходимо крыло большой площади. На крейсерской скорости широкое крыло мешает, создавая избыточную подъемную силу. Проблема решается за счет сложной механизации — выдвижных закрылков и предкрылков. Самолеты меньшего размера, взлетающие с небольших аэродромов и имеющие для этого большие крылья, вынуждены идти на крейсерском участке с неоптимальным углом атаки, что приводит к дополнительному расходу топлива.

Но, если на взлете множество электромоторов, соединенных с винтами, будут дополнительно обдувать крыло, его не придется делать слишком широким. Самолет взлетит с коротким разбегом, а на крейсерском участке узкое крыло не создаст проблем. Машину будут тянуть вперед винты, вращаемые маршевыми электродвигателями, а пропеллеры вдоль крыла на этом этапе будут сложены или убраны до посадки.

В качестве примера можно привести проект NASA — X-57 Maxwell. Концепт-демонстратор оснащен 14 электромоторами, размещенными вдоль крыла и на законцовках консолей. Все они работают только во время взлета и посадки. На крейсерском участке задействованы только двигатели на концах крыла. Такое размещение моторов позволяет снизить негативное влияние вихрей, возникающих в этих местах. С другой стороны, силовая установка получается сложной, а значит, ее дороже обслуживать и вероятность отказов тоже выше. В общем, ученым и конструкторам есть над чем подумать.

X-57 Maxwell Разрабатываемый NASA прототип полностью электрического самолета воплощает в себе популярную идею распределенной электрической силовой установки. На крыле размещают 14 пропеллеров — из них 12 работают только на взлете и посадке, дополнительно обдувая крыло и увеличивая таким образом подъемную силу.

Выручит жидкий азот

«Электрический самолет предоставляет множество возможностей для оптимизации, — говорит Сергей Гальперин. — Можно экспериментировать, например, с комбинированием тянущего и толкающего винтов. Электродвигатели гораздо выигрышней по сравнению с ГТД в конвертопланах, так как безопасный поворот электромотора в горизонтальное положение не представляет такой сложной инженерной проблемы, как в случае с традиционными двигателями. В электросамолете можно обеспечить полную интеграцию всех систем, создать новую систему управления. Даже гибридные машины будут производить меньше шума и вредных выбросов».

Как и аккумуляторы, электромоторы по мере увеличения мощности наращивают массу, объем и тепловыделение. Требуются новые технологии, которые сделали бы их более мощными и легкими. Для отечественных разработчиков гибридных силовых установок настоящим прорывом стало сотрудничество с российской компанией «СуперОкс» — одним из пяти крупнейших в мире поставщиков материалов со свойствами высокотемпературной сверхпроводимости (ВТСП). Сейчас «СуперОкс» разрабатывает электродвигатели со статором из сверхпроводящих материалов (охлаждаемых жидким азотом). Эти моторы с хорошими для авиации характеристиками станут основой гибридной силовой установки для регионального самолета, который, возможно, поднимется в небо в середине будущего десятилетия. В этом году на авиасалоне «МАКС» специалистами ЦИАМ был представлен демонстратор такой установки мощностью 10 кВт. Планируемый самолет будет оснащен гибридной силовой установкой с двумя двигателями мощностью 500 кВт каждый.

«Прежде чем говорить о гибридном электросамолете, — рассказывает Гальперин, — необходимо испытать нашу установку на земле, а затем в летающей лаборатории. Мы надеемся, что это будет Як-40. В нос машины вместо радара мы сможем поставить 500-киловаттный ВТСП-электродвигатель. В хвост вместо центрального двигателя установим турбогенератор. Двух оставшихся двигателей «Яка» будет вполне достаточно, чтобы испытать наше детище в большом диапазоне высот (до 8000 м) и скоростей (до 500 км/ч). И даже если гибридная установка откажет, самолет спокойно сможет завершить полет и приземлиться». Лаборатория-демонстратор по плану будет оборудована в 2019 году. Цикл испытаний предварительно назначен на 2020 год.

Умные небеса

Электрическая и гибридная тяга занимает значительное место в планах крупнейших мировых авиапроизводителей. Вот так выглядят основные черты пассажирской авиации середины нынешнего века согласно программе Smarter Skies компании AIRBUS.

«Зеленый» полет

Самолеты будущего сконструируют таким образом, чтобы максимально уменьшить углеводородный след в атмосфере. Распространение получат газотурбинные двигатели на водороде, гибридные схемы и полностью электрические самолеты на батареях. Предполагается, что батареи будут подзаряжаться от экологически чистых источников электричества. Возможно появление в районе аэродромов крупных ветропарков или солнечных электростанций.

Свобода в небе

Интеллектуальные лайнеры будут самостоятельно прокладывать маршруты исходя из параметров экологичности и топливной эффективности на основе анализа данных о погоде и состоянии атмосферы. Также они смогут собираться в формации наподобие птичьих стай, что позволит снизить лобовое сопротивление для отдельных входящих в формацию ЛА и уменьшить энергозатраты на полет.

Скорее от земли

Новые силовые установки и аэродинамика лайнеров позволят им взлетать по максимально возможной крутой траектории, чтобы уменьшить шум в районе аэропортов и как можно скорее достичь крейсерского эшелона, где самолет демонстрирует оптимальные экономические характеристики.

Посадка без двигателя

Самолеты будущего смогут заходить на посадку в планирующем режиме. Это сэкономит топливо, уменьшит уровень шума в районе аэропортов. Также снизится посадочная скорость. Это позволит сократить длину взлетно-посадочных полос.

Никакого выхлопа

Аэропорты будущего полностью откажутся от ДВС, сжигающих топливо. Для руления лайнеры будут оснащены электрическими мотор-колесами. Как альтернатива — скоростные беспилотные электротягачи, которые смогут быстро доставлять самолеты от перрона к ВПП и наоборот.

Статья «Вверх на электричестве» опубликована в журнале «Популярная механика» (№1, Январь 2018).

История

Ранняя история

Дирижабль La France с электрическим двигателем, 1883

Электрические двигатели на воздушных судах применялись ещё в XIX веке. 8 октября 1883 года французский воздухоплаватель Гастон Тиссандье совершил первый полёт на дирижабле La France с использованием электрического двигателя Вернера фон Сименса, питавшегося от 435-килограммовой батареи. В следующем году Шарль Ренар совместно с Артуром Кребсом совершили полёт на дирижабле с более мощным двигателем.

Авиамодели

Запуски электрических авиамоделей с неподвижным крылом осуществляются с 1957 года, однако имеются неподтверждённые сведения о запуске в 1909 году. Электрические модели уступали в скорости моделям, летающим на жидком топливе, и были дороже. Главным недостатком было отсутствие ёмких аккумуляторов, в связи с чем широкое распространение электромодели получили лишь в начале 1990-х.

1964 год. Американский инженер Уильям Браун продемонстрировал журналисту CBS News Уолтеру Кронкайту модель вертолёта, получающую необходимую для полёта энергию от микроволнового излучения.

Первые пилотируемые полёты

Solar Challenger совершил перелёт через Ла-Манш 1981 году

В 1973 году Фред Милишки и Хейно Брдишка на базе австрийского моторного планера Brditschka HB-3 создали вариант Militky MB-E1 с электрическим двигателем. Хейно Брдишка в том же году совершил полёт на нём продолжительностью 14 минут. Таким образом, модель Militky MB-E1 стала первым пилотируемым электрическим летательным аппаратом, поднявшим человека в воздух.

29 апреля 1979 года в городе Риверсайде (штат Калифорния), 35-минутный полёт с человеком на борту совершил самолёт Mauro Solar Riser, оснащённый электромотором мощностью 3,5 л. с. и 30-вольтным никель-кадмиевым аккумулятором, снятым с вертолёта Hughes 500. На крыльях самолёта хоть и располагались солнечные фотоэлементы, однако возможность подзаряжаться во время полёта отсутствовала. Инициатором создания выступил Ларри Мауро. Однако, дальше испытаний дело так и не зашло.

7 июля 1981 года через пролив Ла-Манш совершил перелёт Solar Challenger. Время полёта составило 5 часов 23 минуты.

1980—1990 годы

Sunseeker I пересёк США в 1990 году

С 1983 по 2003 годы агентство NASA финансировало создание самолётов Pathfinder и его модификаций Pathfinder Plus, Centurion и Helios в рамках экологических исследований. Последнему из них принадлежит рекорд по высоте подъёма среди крылатых летательных аппаратов без реактивных двигателей — 29,5 км.

В 1990 году Эрик Раймонд завершил работу над своим детищем Sunseeker I, начатую в 1986 году. Sunseeker I пересёк США, потратив на это 21 полёт и 121 час в воздухе.

2000-е — наши дни

Беспилотному аппарату Helios принадлежит высотный рекорд для электрических самолётов — 29,5 км

Существенный рывок эта область самолётостроения получила в конце 1990-х — начале 2000-х, когда созданием электросамолётов заинтересовались частные фирмы. Среди причин, способствовавших развитию нового типа самолётов стало повышение требований к защите окружающей среды, появление современных ёмких аккумуляторов, а также лёгких и прочных материалов. Помимо прочего, электрические самолёты отличает низкий уровень шума, что может быть хорошим преимуществом при выполнении разведывательных операций.

Британский беспилотный летательный аппарат QinetiQ Zephyr с питанием от солнечных батарей в 2010 году установил мировой рекорд длительности полёта БПЛА, пробыв в воздухе две недели.

20 июля 2012 года Long-ESA установил рекорд скорости для самолётов с электродвигателем, разогнавшись во время испытания до 326 км/ч.

Швейцарский самолёт Solar Impulse, находящийся в проектной стадии, возможно станет первым в мире пилотируемым самолётом, способным неограниченно долго летать за счёт энергии Солнца. В 2015 на самолёте «Solar Impulse 2» планировалось совершить кругосветный полёт (с промежуточными посадками). Из-за технических проблем полёт прервался в июле 2015 года на Гавайских островах и завершился в июле 2016 года.

В июле 2014 года на авиасалоне в Ле-Бурже представлен самолёт Airbus E-FAN, проектируемый как тренировочный самолёт, способный выполнять фигуры высшего пилотажа.

28 июня 2016 года компания Facebook провела пробный запуск беспилотного самолёта Aquila на солнечных батареях, предназначенного для раздачи интернета жителям труднодоступных районов. По словам Марка Цукерберга, подобные аппараты смогут проводить в полёте до нескольких месяцев на высоте 18 километров. В планах компании создать целый флот из подобных беспилотников.

4 июля 2016 года компания Siemens провела пробный запуск электрического самолета EXTRA 330LE.

Примечания

  1. Турбоэлектролет // Популярная механика, ноябрь 2017, с. 37
  2. Noth, André History of Solar Flight. Autonomous Systems Lab. Zürich: Swiss Federal Institute of Technology (July 2008). — «Günter Rochelt was the designer and builder of Solair I, a 16 m wingspan solar airplane … 21st of August 1983 he flew in Solair I, mostly on solar energy and also thermals, during 5 hours 41 minutes.». Дата обращения 8 июля 2010. Архивировано 1 февраля 2012 года.
  3. 1 2 Taylor, John W R. Jane’s All the World’s Aircraft 1974-75. — London : Jane’s Yearbooks, 1974. — P. 573. — ISBN 0 354 00502 2.
  4. 1 2 3 Олег Макаров. Вверх на электричестве // Популярная механика. — 2018. — № 1. — С. 64 — 70.
  5. 1 2 Renard, Charles ACADÉMIE DES SCIENCES / séance du 18 août 1884 / NAVIGATION AÉRIENNE. — Sur un aérostat dirigeable. (фр.). French Academy of Sciences (18 août 1884). — «1884 … l’année dernière par M. Tissandier, qui le premier a appliqué l’électricité à la propulsion des ballons».
  6. Day, ‘Tubby’ History of Electric Flight. — «Published in ‘Model Engineer’ in 1909 … oak propeller … flown for eight minutes … Colonel H. J. Taplin, … 1957 … first officially recorded electric powered radio controlled model flight». Архивировано 7 декабря 2008 года.
  7. Fisher, Arthur (January 1988). “Secret of perpetual flight? Beam-powered plane”. Popular Science. 232: 62. Дата обращения 2012-03-31.
  8. Experimental Aircraft Association, Inc. UFM/MAURO SOLAR RISER (2008). Дата обращения 27 июня 2008.
  9. Curry, Marty Solar-Power Research and Dryden (March 2008). Дата обращения 27 июня 2008.
  10. Самолет Long-ESA становится самым быстрым в мире электрическим самолетом
  11. E-Fan: Электровентиляторный самолет, пригодный для серьезного пилотажа, продемонстрирован на авиасалоне в Ле-Бурже
  12. Компания Facebook испытала беспилотник Aquila, раздающий интернет // ТАСС, 22 июля 2016 года
  13. AliSport Silent Club > Electric Self-launch Sailplane (undated). Дата обращения 4 ноября 2009. Архивировано 20 апреля 2009 года.
  14. Bertorelli, Paul Airbus Announces Electric Aircraft. Avweb (24 апреля 2014). Дата обращения 28 апреля 2014.
  15. Григорий Тарасевич. Более электрический самолет // Кот Шрёдингера. — 2017. — № 11-12. — С. 36-41.

Электрические самолёты: будущее, которое наступило

Эра авиастроения, начавшаяся более века назад, в ближайшем будущем может кардинально измениться, причём, обусловлено это будет не созданием каких-либо уникальных летательных аппаратов, а доработкой ныне существующих конструкций. На сегодняшний день стоимость перелёта на воздушных судах из одной точки земного шара в другую определяется главным образом объёмами затраченного горючего, и хотя крупнейшие в мире авиастроители, в частности, речь идёт о корпорациях «Airbus» и «Boeing», активно вкладывают средства в создание более эффективных двигателей, однако, если перелёты и удаётся удешевить, то не более чем на 10-12%. Тем не менее, далеко не все осознают, что будущее авиации уже наступило, в частности, на сегодняшний день существуют пять разнообразных моделей электрических самолётов, способных перемещаться на дальних расстояниях, расходуя при этом на 40-50% меньше горючего.

Самолёт Airbus E-Fan

Наибольших успехов в создании электрических самолётов добилась европейская авиастроительная корпорация «Airbus». Обусловлено это в первую очередь тем фактом, европейский производитель прекрасно осознаёт, что далеко не во всех регионах земного шара имеется достаточное количество углеводородного топлива, а учитывая постоянный спрос на него, уже в будущем, стоимость нефти, а равно и топлива созданного на его основе, лишь продолжит расти. Исходя из этого, корпорация «Airbus» уже несколько лет трудится над созданием электрических самолётов, причём, речь идёт как о частных летательных аппаратах, так и о полномерных авиалайнерах, способных перевозить на своём борту до 180-150 пассажиров.

Прекрасным примером инженерной мысли авиаконструкторов из корпорации «Airbus» является проект Vahana, представляющий собой одноместное воздушное судно, которое может использоваться для полетов, как в городской черте, так и на довольно внушительных расстояниях. Предполагается, что подобные летательные аппараты в ближайшем будущем придут на смену обычным автомобилям, так как при помощи этого воздушного судна можно беспрепятственно перемещаться на дистанциях до 150 километров при максимальной скорости полёта в 120 км\ч.

Летательный аппарат Airbus Vahaha

Отнюдь не менее интересным проектом корпорации «Airbus» является электрический летательный аппарат CityAirbus, представляющий собой один из видов общественного транспорта, в частности, при помощи этого воздушного средства, можно будет перемещаться в радиусе 50 километров, при максимальной вместимости на борту до 14 человек. Предполагается, что после начала серийного производства этих летательных аппаратов, стоимость перелёта в них составит порядка 20 долларов за каждых 10 километров маршрута, что является весьма приемлемым.

Проект CityAirbus

Отнюдь не меньших успехов смогла добиться американская авиастроительная компания «Zunum Aero», которая с 2013 года занимается разработкой двух моделей электрических пассажирских самолётов, одна из которых ориентирована на эксплуатацию в секторе коммерческих перевозок, а другая нацелена на бизнес-перевозки. Реализация бизнес-джета Zunum AeroJet намечена на 2020 год, и вполне вероятно, этот 10-местный самолёт сможет успешно конкурировать с крупнейшими в настоящий момент авиастроителями, занятыми в секторе производства самолётов административного типа. Что же касается модели Zunum Aero CRJ, то сроки реализации данного проекта будут зависеть от успешности создания бизнес-джета, но, по мнению экспертов, это воздушное судно сможет успешно подняться в воздух уже к 2022 году.

Самолёт Zunum Aero CRJ

Израильские инженеры из компании «Eviation» также смогли сильно продвинуться в реализации проекта создания электрического самолёта предназначенного для перевозки на своём борту людей. Как сообщают представители компании «Eviation», самолёт Eviation Aircraft сможет совершать перелёты на дистанциях до одной тысячи километров, при максимальной вместительности на борту до 12 человек. На данный момент проект всё ещё находится в стадии реализации, однако, предполагается, что уже к 2023 году самолёт сможет произвести свой первый полёт.

Самолёт Eviation Aircraft

Коммерческий пассажирский лайнер Wright Electric представляет собой довольно интересный проект, реализуемый американскими инженерами и учёными. Как следует из официальных данных, этот самолёт позволяет перевозить на своём борту до 186 пассажиров на дистанциях до 900 километров, что вполне подходит для полётов по местным, региональным и даже международным маршрутам, при этом, по сравнению с обычными самолётами, стоимость перелёта может сократиться на 50-60%.

Особености электрического самолета E-Fan

Этот самолет, несмотря на недолгую историю, уже совершил более шестидесяти тестовых полетов, в том числе демонстрационный, проходивший перед тысячной аудиторией авиасалона Фарнборо-2014. Чем же так замечательна новинка? Самолет ни в воздухе, ни на земле не производит выбросов углекислого газа, поскольку работа его осуществляется при помощи электродвигателя, что во много раз снижает еще и уровень шума.

Созданием полностью электрического инновационного самолета занимаются и специалисты NASA. Небольших пропеллеров у него будет восемнадцать, а разместить их планируют на крыльях экстремального самолета, размах которых достигнет 9,5 метров. Работа пропеллеров производиться будет за счет использования литий – железо – фосфатных аккумуляторов.

На разных скоростях функционировать каждый из них может самостоятельно, что поможет оптимизировать расход электроэнергии.

Во время полета возможно отключение некоторого количества двигателей, как и при взлете, нет необходимости запуска сразу восемнадцати моторов.

На каком этапе находится разарботка самолета в России

В настоящее время завершен цикл научно-исследовательских работ, целью которых было создание для ПЭС электроэнергетического комплекса. Параметры системы и тип подбирались к самолету, вместимость которого от ста тридцати человек до двухсот тридцати. Для инновационного воздушного лайнера этот комплекс будет ключевым. Генеральный директор концерна, занимающегося этими вопросами, надеется, что в будущем его концерн будет главным поставщиком для перспективных самолетов авионики.

Разработчиками учтены новейшие достижения в области силовой и микроэлектроники, нанотехнологий и материаловедении. Реализация разработки, как ожидается, позволит снизить вес бортового оборудования, по меньшей мере, на три с половиной тонны, а экономичность увеличить на 15-20%. Кроме этого, значительно уменьшится стоимость эксплуатации ЛА, увеличится надежность, а также ресурс конструкции, улучшатся экологически е показатели и летно-технические характеристики.

Первый такой самолет, возможно, появится уже в 2020 году.

Leave a Comment