Самый большой телескоп

Содержание

European Extremely Large Telescope

Название данного проекта – «Тридцатиметровый телескоп», так как диаметр его основного зеркала составляет 39,3 метра. Примечательно то, что он находится только на стадии проектирования, а вот проект E-ELT (European Extremely Large Telescope) – уже в процессе строительства. К 2025 году его планируют закончить и запустить на полную мощность.

Этот гигант с 798 подвижными зеркалами и 40 метровым основным зеркалом затмит все телескопы на земле. С помощью него откроются абсолютно новые перспективы в изучении других планет, особенно тех, что расположены за пределами Солнечной системы. Кроме того, с помощью этого телескопа можно будет изучать состав их атмосферы, а также размеры планет.

European Extremely Large Telescope

Кроме обнаружения таких планет, данный телескоп будет изучать сам космос, его развитие и зарождение, а также он будет измерять, насколько быстро расширяется Вселенная. Кроме того задачей телескопа будет являться проверка и подтверждение некоторых уже существующих данных и фактов, таких как постоянство во времени. Благодаря этому проекту, ученые смогут найти ответ на многие ранее неизвестные факты: зарождение планет, их химический состав, наличие жизненных форм и даже разума.

Авторы проекта уже объявили его стоимость в 1 миллиард евро, что, несомненно, должно стать хорошим знаком для его финального завершения.

Thirty Meter Telescope (TMT)

Этот проект имеет сходство с гавайским телескопом Keck, который имел когда-то огромный успех. У них достаточно схожие характеристики и технологии. Принцип работы этих телескопов заключается в том, что главное зеркало разделено на множество подвижных элементов, которые и дают такую мощь и супер возможности. Целью данного проекта является исследование самых отдаленных участков Вселенной, фото зарождающихся галактик, их динамика и рост.

Thirty Meter Telescope (TMT)

По данным некоторых источников цена проекта достигает более чем 1 миллиард долларов. Желающие поучаствовать в столь масштабном проекте сразу объявили о себе и о своём желании частично финансировать строительство TMT. Ими стали Китай и Индия. Тридцатиметровый телескоп планируется строить на Гавайских островах, на горе Мауна Кеа, но правительство Гавайев до сих пор не может решить проблему с коренными жителями, так как они против строительства на священном месте. Попытки договориться с местными продолжаются, а успешный финал строительства супер гиганта назначен на 2022 год.

European Extremely Large Telescope (E-ELT)

Именно так в оригинале звучит его название. Переводится дословно так: «Европейский чрезвычайно большой телескоп». И сложно не согласиться с заявленными в названии размерами. Он действительно чрезвычайно велик – можно убедиться, взглянув на предлагающееся выше фото.

Где находится самый большой телескоп в мире? В Чили, на вершине горы Серро Армазонес, высота которой составляет 3 060 метров. Он уникален, потому что представляет собой астрономическую обсерваторию.

Сам телескоп оснастят сегментным зеркалом, диаметр которого равен 39.3 м. Он состоит из множества шестиугольных сегментов (их 798, если быть точнее). Толщина каждого составляет 50 мм, а диаметр – 1.4 м.

Такое зеркало даст возможность собирать аж в 15 раз больше света, чем может любой существующий на данный момент телескоп. Плюс ко всему, E-ELT планируется оснастить уникальной адаптивной оптической системой, состоящей из пяти зеркал. Именно она будет обеспечивать компенсацию турбулентности земной атмосферы. К тому же, благодаря такой технологии, изображения станут намного более чёткими и детализированными, чем раньше.

Строительство E-ELT

Пока что самый большой телескоп в мире в эксплуатацию не введён. Он только строится. Предполагалось, что процесс займёт 11-12 лет. Начало работ намечалось на 2012 год, но в итоге их перенесли на март 2014-го. За 16 первых месяцев планировалось:

  • Построить подъездную дорогу к месту, где будет располагаться башня телескопа.
  • Подготовить несущую платформу на вершине горы.
  • Установить траншеи для кабелей и труб.

Первым делом взорвали вершину скалы Армазонес — прямо в том месте, где планировалось возводить пресловутую башню. Произошло это в 2014 году, 20 июня. Взорвав скалу, удалось подготовить опору под многотонный инструмент.

Затем, в 2015 году, 12 ноября, провели традиционную церемонию закладки первого камня.

А 26 мая 2016-го в штаб-квартире Европейской южной обсерватории подписали крупнейший в истории наземной астрономии контракт. Его предметом, разумеется, стало строительство купола, башни и механических конструкций сверхтелескопа. На это ушло 400 000 000 евро.

На данный момент проектом занимаются в полную силу. 30 мая текущего, 2017 года, был подписан другой контракт, самый важный – на изготовление пресловутого 39.3-метрового зеркала.

Производством сегментов, из которых оно будет состоять, занимается международный технологический концерн Schott, располагающийся в Германии. А их полировкой, сборкой и тестированием займутся специалисты французской компании Reosc, входящей в промышленный конгломерат Safran, который работает в области высоких технологий и электроники.

Возможности изобретения

Проект по строительству самого большого телескопа в мире был профинансирован полностью, так что с уверенностью можно заявить – возведение обсерватории будет завершено. Есть даже приблизительная дата введения устройства в эксплуатацию – 2024 год.

Возможности у него впечатляющие. Если верить учёным, то самый большой телескоп в мире сможет не то, что находить планеты, близкие Земле по размерам – он будет способен изучить состав их атмосферы при помощи спектрографа! А это открывает невиданные ранее перспективы в изучении космических объектов, находящихся вне Солнечной системы.

Кроме этого, с помощью E-ELT учёные смогут исследовать ранние стадии развития космоса, и даже выяснить точные данные об ускорении расширения Вселенной. Ещё удастся проверить физические константы на постоянство во времени, и даже найти на обнаруженных планетах органику и воду.

По сути, самый огромный телескоп в мире – это прямой путь к ответам на ряд фундаментальных научных вопросов, связанных с космосом и даже возникновением жизни.

И если действительно всё перечисленное (или хотя бы что-то) будет иметь место быть, то это окажется самый оправданный миллиард долларов, вложенный в изобретение чего-либо. $1 000 000 000 — заявленная Европейской южной обсерватории стоимость самого большого телескопа в мире, фото которого представлено выше.

Thirty Meter Telescope

Выше было сказано о том, какой телескоп самым большим в мире может считаться по праву. Thirty Meter Telescope является вторым после него. Диаметр главного зеркала составляет 30 метров. А находится ТМТ на горе Мауна Кеа (Гавайи), высота которой достигает 4 050 м.

Это следующий самый большой оптический телескоп в мире. Проект был одобрен в 2013 году – тогда же начались и подготовительные работы.

Стоит отметить, что ТМТ стоит так же, как и самый большой оптический телескоп в мире E-ELT. В него уже вложен 1 миллиард долларов. А 100 миллионов израсходовали ещё до того, как начались строительные работы. Деньги ушли на проектную документацию, конструирование, и ещё на подготовку стройплощадки. Официальное строительство стартовало в 2014 году, 7 октября.

Проект ТМТ заинтересовал многих – его проспонсировало не только государство США, но ещё и Канада, Китай, Индия, Япония.

Интересно, что организаторы себе чуть не обеспечили проблемы, выбрав в качестве локации будущей обсерватории гору Мауна Кеа. Это место – священно для коренных гавайцев. Естественно, многие из них резко выступили против возведения на нём самого большого телескопа в мире (фото есть выше). Но в итоге Гавайское бюро земельных и природных ресурсов дало «добро» на строительство.

Giant Magellan Telescope

Вот ещё, какой самый большой телескоп в мире стоит отметить вниманием. «Гигантский Магелланов телескоп» — это проект Австралии и США. На данный момент строительство идёт полным ходом. GMT, как и E-ELT, находится в Чили. Более точная локация — обсерватория Лас-Кампанас, разместившаяся на высоте 2 516 метров над уровнем моря.

В основу данного изобретения будет положено главное зеркало, диаметром в 25.4 м. Кроме гигантского рефлектора, телескоп получит новейшую адаптивную оптику. Она даст возможность по максимуму устранить все искажения, которые создаёт атмосфера во время наблюдений.

Если верить учёным, то всё перечисленное даст возможность получить в 10 раз более качественное изображение, чем сейчас даёт «Хаббл», находящийся на орбите.

В теории GMT будет выполнять массу функций. При помощи этого изобретения учёные смогут находить экзопланеты и делать их снимки, исследовать галактическую, звёздную и планетарную эволюцию, чёрные дыры и проявление тёмной энергии. С GMT может даже получиться понаблюдать за самым первым поколением галактик.

Ориентировочно работы закончатся в 2020 году. Но разработчики настроены более позитивно – они говорят, что телескоп, скорей всего, увидит «первый свет» с четырьмя зеркалами. Их нужно только ввести в конструкцию. Если это так, то случится данное событие совсем скоро — на данный момент ведутся работы по созданию четвёртого зеркала.

Проект Ватикана

Сейчас речь пойдёт об очень интересной теме. В 2010 году, на горе Грехэм в Аризоне, открыли новый телескоп. Над ним долгое время работала целая команда учёных из крупнейших немецких университетов, специалисты из Ватикана (основатели проекта), а также профессора Университета штата Аризона. Пусть это и не самый большой телескоп в мире, но изобретение удивительное. И о нём стоит рассказать.

Итак, это – величайший зеркальный телескоп в мире. Который именуется… «Люцифер». Самый большой в мире телескоп бинокулярного типа с двумя параболическими зеркалами, диаметр каждого из которых составляет 8.4 м, называется именно так.

Что самое интересное – данное слово складывается из аббревиатурных букв. В оригинале это выглядит так — L.U.C.I.F.E.R. Если расшифровать, то получится: Large Binocular Telescope Near-ifrared Utility with Camera and Integral Field Unit for Extragalactic Research.

Устройство высокотехнологичное. Его нестандартный дизайн обеспечивает массу достоинств. Это изобретение, задействовав одновременно два зеркала, способно создавать снимки одного и того же объекта в разных фильтрах. И это на порядок сокращает уходящее на наблюдение время.

Проект Square Kilometer Array (SKA)

SKA – это интерферометр, на строительство которого было выделено полтора миллиарда евро. Если его удастся сконструировать, то он станет в 50 раз более мощным астрономическим инструментом, чем любые другие радиотелескопы нашей планеты.

Перспективы изобретения впечатляют. SKA сможет обозревать небо как минимум в 10 000 раз быстрее, чем другие аналогичные, но менее мощные устройства.

Что касательно локации? Где самый большой телескоп в мире для радиоастрономических наблюдений будет находиться?

Согласно сведениям о проекте, антенны SKA должны были покрыть площадь, равную 1 кв.км. Такой масштаб обеспечил бы абсолютную, беспрецедентную чувствительность. Но в дальнейшем было решено разместить антенны сразу в нескольких местах – в ЮАР, в Австралии, а ещё в Новой Зеландии. Именно оттуда обеспечивается лучший обзор Млечного Пути и всей Галактики. Уровень радиопомех, в то же время, ниже.

Следует отметить, что уже в 2016 году, в июле, этот самый большой оптический телескоп в мире официально начал свою работу. Точнее, его часть, находящаяся в ЮАР – MeerKAT. В первый же сеанс работы этот телескоп открыл тысячи галактик, которые ранее были не известны.

Лидер среди рефракторов

В далёком 1900 году в Париже прошла Всемирная астрономическая выставка. Специально для экспозиции было сконструировано изобретение, ставшее самым большим в мире телескопом-рефрактором. Его фотография представлена выше.

Рефракторы – это привычные всем нам оптические телескопы, для современных версий которых характерна компактность. Их конструкция намного проще, чем у перечисленных выше изобретений. В рефракторах для собирания света используется система линз, именуемая объективом.

Но французское изобретение впечатляет своими размерами. Диаметр линзы достигает 59 дюймов (это 125 сантиметров), а фокусное расстояние составляет 57 метров.

Естественно, это устройство практически не использовалось, как астрономический инструмент. Но зрелище было впечатляющим. К сожалению, в 1909 году его демонтировали и разобрали.

Всё потому, что компания, спонсировавшая процесс по изготовлению данного устройства (занявший 14 лет), обанкротилась. Об этом фирма заявила сразу после окончания выставки. Поэтому в 1909-м изобретение выставили на аукцион. Однако покупателя на столь неординарную вещь не нашлось, и её постигла печальная участь, о которой было уже сказано. Так что посмотреть на телескоп в наши дни невозможно.

Продолжение обзора самых крупных телескопов мира, начатого в предыдущем посте.

Диаметр главного зеркала более 6 метров.

Смотрите так же расположение крупнейших телескопов и обсерваторий на карте мира.

Многозеркальный Телескоп

Башня «Многозеркального телескопа» на фоне кометы Хейла-Боппа. Гора Маунт-Хопкинс (США).

Multiple Mirror Telescope (MMT). Находится в обсерватории «Маунт-Хопкинс» в штате Аризона, (США) на горе Маунт-Хопкинс на высоте 2606 метров. Диаметр зеркала — 6,5 метров. Начал работу с новым зеркалом 17 мая 2000 г.

На самом деле этот телескоп был построен в 1979 году, но тогда его объектив был выполнен из шести зеркал по 1,8 метра, что эквивалентно одному зеркалу диаметром 4,5 метра. На момент постройки это был третий по мощности телескоп в мире после БТА-6 и Хейла (см. предыдущий пост).

Шли годы, технологии улучшались, и уже в 90-х стало ясно, что вложив относительно небольшое количество средств, можно заменить 6 отдельных зеркал на одно большое. Причём, это не потребует значительных изменений конструкции телескопа и башни, а количество света, собираемое объективом увеличится в целых 2,13 раза.

Multiple Mirror Telescope до (слева), и после (справа) реконструкции.

Эта работа была выполнена к маю 2000 года. Было установлено 6,5 метровое зеркало, а так же системы активной и адаптивной оптики. Это не цельное, а сегментированное зеркало, состоящее из точно подогнанных 6-ти угольных сегментов, так что название телескопа менять не пришлось. Разве, что иногда стали добавлять приставку «новый».

У нового MMT, кроме того что он стал видеть в 2,13 раза более слабые звёзды, в 400 раз увеличилось поле зрения. Так что, работа явно не прошла даром.

Активная и адаптивная оптика

Система активной оптики позволяет при помощи специальных приводов, установленных под главным зеркалом, компенсировать деформацию зеркала при вращении телескопа.

Адаптивная оптика, посредством отслеживания искажения света искусственных звёзд в атмосфере, созданных с помощью лазеров, и соответствующего искривления вспомогательных зеркал, компенсирует атмосферные искажения.

Телескопы Магеллана

Телескопы Магеллана. Чили. Расположены на расстоянии 60 м. друг от друга, могут работать в режиме интерферометра.

Magellan Telescopes — два телескопа — «Магеллан-1» и «Магеллан-2», с зеркалами по 6,5 метров диаметром. Расположены в Чили, в обсерватории «Лас-Кампанас» на высоте 2400 км. Кроме общего названия у каждого из них есть ещё и своё имя — первый, назван в честь немецкого астронома Вальтера Бааде, начал работу 15 сентября 2000 года, второй, названный в честь Лэндона Клэя — американского филантропа, вступил в строй 7 сентября 2002 года.

Обсерватория Лас-Кампанас расположена в двух часах езды на машине от города Ла-Серена. Это очень удачное место для расположения обсерватории как благодаря достаточно большой высоте над уровнем моря, так и благодаря удалённости от населенных пунктов и источников пыли. Два телескопа-близнеца «Магеллан-1» и «Магеллан-2», работающие как по отдельности, так и в режиме интерферометра (как единое целое) на данный момент являются основными инструментами обсерватории (ещё есть один 2,5 метровый и два 1-метровых рефлектора).

Гигантский Магелланов Телескоп (ГМТ). Проект. Дата реализации — 2016 год.

23 марта 2012 года эффектным взрывом верхушки одной из ближайших гор было начато строительство «Гигантского Магелланова Телескопа» (ГМТ). Вершину горы снесли, чтобы расчистить место для нового телескопа, который должен начать работу в 2016 году.

Giant Magellan Telescope (GMT) будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали «Семиглаз». Из всех проектов огромных телескопов этот (на 2012 год) — единственный, реализация которого перешла из стадии планирования к практическому строительству.

Телескопы «Джемини»

Башня телескопа «Джемини север». Гавайи. Вулкан Мауна-Кеа (4200 м). «Джемини юг». Чили. Гора Серра-Пачон (2700 м).

Тоже два телескопа-близнеца, только каждый из «братьев» расположен в другой части света. Первый — «Джемини север» — на Гавайях, на вершине потухшего вулкана Мауна-Кеа (высота 4200 м). Второй — «Джемини юг», находится в Чили на горе Серра-Пачон (высота 2700 м).

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра, построены они в 2000 г. и принадлежат обсерватории «Джемини», управляемой консорциумом из 7 стран мира.

Так как телескопы обсерватории расположены в разных полушариях Земли, то этой обсерватории доступно для наблюдения всё звёздное небо. К тому же, системы управления телескопами приспособлены для удалённой работы через интернет, поэтому астрономам не приходится совершать далёкие путешествия от одного телескопа к другому.

Северный «Джемини». Вид внутри башни.

Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. В телескопах используются системы активной (120 приводов) и адаптивной оптики, особая система серебрения зеркал, что обеспечивает уникальное качество изображения в инфракрасном диапазоне, система много-объектной спектроскопии, в общем «полный фарш» самых современных технологий. Всё это делает обсерваторию «Джемини» одной из самых совершенных астрономических лабораторий на сегодняшний день.

Телескоп «Субару»

Японский телескоп «Субару». Гавайи.

«Субару» по-японски значит «Плеяды», название этого красивейшего звёздного скопления знает каждый, даже начинающий, любитель астрономии. Subaru Telescope принадлежит Японской Национальной Астрономической Обсерватории, но расположен на Гавайях, на территории Обсерватории Мауна-Кеа, на высоте 4139 м., то есть по соседству с северным «Джемини». Диаметр его главного зеркала — 8,2 метра. «Первый свет» увидел в 1999 году.

Его главное зеркало — крупнейшее в мире цельное зеркало телескопа, но оно относительно тонкое — 20 см., его вес составляет «всего» 22,8 т. Это позволяет эффективно использовать точнейшую систему активной оптики из 261 привода. Каждый привод передаёт своё усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться практически рекордного на сегодняшний день качества изображения.

Телескоп с такими характеристиками просто обязан «увидеть» во вселенной неведомые доселе чудеса. И действительно, с его помощью была открыта самая далёкая из известных на сегодняшний день галактик (расстояние 12,9 млрд. св. лет), самая большая структура во вселенной — объект протяжённостью 200 млн. световых лет, вероятно зародыш будущего облака галактик, 8 новых спутников Сатурна.. Ещё этот телескоп «особо отличился» в поиске экзопланет и фотографировании протопланетных облаков (на некоторых снимках даже различимы сгустки протопланет).

Телескоп Хобби-Эберли

Обсерватория Мак-Дональд. Телескоп Хобби-Эберли. США. Техас.

The Hobby-Eberly Telescope (HET) — расположен в США, в Обсерватории Мак-Дональд. Обсерватория располагается на горе Фолкс, на высоте 2072 м. Начало работы — декабрь 1996г. Эффективная апертура главного зеркала — 9,2 м. (Фактически зеркало имеет размер 10х11 м, но принимающие свет приборы, расположенные в фокальном узле, обрезают края до диаметра 9,2 метра.)

Не смотря на большой диаметр главного зеркала этого телескопа, Хобби-Эберли можно отнести к низко бюджетным проектам — он обошёлся всего в 13,5 млн. долларов США. Это немного, например тот-же «Субару» стоил своим создателям около 100 млн.

Сэкономить бюджет удалось благодаря нескольким конструктивным особенностям:

Конструкция телескопа Хобби-Эберли.

  • Во-первых, этот телескоп был задуман как спектрограф, а для спектральных наблюдений достаточно сферического, а не параболического главного зеркала, что гораздо проще и дешевле в производстве.
  • Во-вторых, главное зеркало не цельное, а составленное из 91 идентичного сегмента (так как его форма сферическая), что так же очень удешевляет конструкцию.
  • В-третьих, главное зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Это избавляет от необходимости снабжения зеркала сложной системой корректировки формы (активная оптика), так как угол его наклона не изменяется.

Но не смотря на такое фиксированное положение главного зеркала, этот оптический инструмент охватывает 70% небесной сферы за счёт движения 8-тонного модуля приёмников света в фокальной области. После наведения на объект главное зеркало остаётся неподвижным, а движется только фокальный узел. Время непрерывного ведения объекта составляет от 45 минут у горизонта до 2 часов в верхней части небосвода.

Благодаря своей специализации (спектрография) телескоп успешно используется, например, для поиска экзопланет или для измерения скорости вращения космических объектов.

Большой южноафриканский телескоп

Большой Южноафриканский Телескоп. SALT. ЮАР.

Southern African Large Telescope (SALT) — находится в ЮАР в Южно-африканской Астрономической Обсерватории в 370 км к северо-востоку от Кейптауна. Обсерватория расположена на сухом плато Кару, на высоте 1783 м. Первый свет — сентябрь 2005 года. Размеры зеркала 11х9,8 м.

Башня телескопа в SALT разрезе. Схема.

Правительство Южно-Африканской Республики вдохновлённое дешевизной телескопа HET, решило построить его аналог дабы не отставать от других развитых стран мира в изучении вселенной. К 2005 году строительство было завершено, весь бюджет проекта составил 20 млн. долларов США половина из которых пошла на сам телескоп, другая половина — на здание и инфраструктуру.

Так как телескоп SALT является практически полным аналогом HET, то всё, что было сказано выше о HET’е относится и к нему.

Но, конечно не обошлось без некоторой модернизации — в основном она коснулась коррекции сферической аберрации зеркала и увеличению поля зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии объектов с разрешением до 0,6″. Адаптивной оптикой данный прибор не снабжён (наверное у правительства ЮАР не хватило денег).

Кстати, зеркало этого телескопа, крупнейшее в южном полушарии нашей планеты, делалось на «Лыткаринском заводе оптического стекла», то есть на том же, что и зеркало телескопа БТА-6, крупнейшего в России.

Самый большой телескоп в мире

Большой Канарский телескоп

Башня Большого Канарского телескопа. Канарские о-ва (Испания).

The Gran Telescopio CANARIAS (GTC) — расположен на вершине потухшего вулкана Мучачос на острове Ла-Пальма на северо-западе Канарского архипелага, на высоте — 2396 м. Диаметр главного зеркала — 10,4 м (площадь — 74 кв.м.) Начало работы — июль 2007 года.

Обсерватория называется Роке-де-лос-Мучачос. В создании GTC принимали участие Испания, Мексика и университет Флориды. Этот проект обошёлся в 176 млн. долл. США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа диаметром 10,4 метра, составленное из 36 шестиугольных сегментов — крупнейшее из существующих на сегодняшний день в мире (2012 г). Сделано по аналогии с телескопами Кека.

The Gran Telescopio CANARIAS (GTC). Внутри башни.

..и, похоже GTC будет удерживать первенство по данному параметру пока в Чили на горе Армазонес (3 500 м) не построят телескоп с зеркалом сразу в 4 раза большего диаметра — «Экстремально Большой Телескоп» (European Extremely Large Telescope), или же на Гавайях не возведут Тридцатиметровый телескоп (Thirty Meter Telescope). Какой из этих двух конкурирующих проектов будет воплощён быстрее — неизвестно, но по плану и тот и другой должны быть закончены к 2018 году, что для первого проекта выглядит более сомнительно, чем для второго.

Конечно, есть ещё 11 метровые зеркала телескопов HET и SALT, но как уже говорилось выше, из 11 метров у них эффективно используется лишь 9,2 м.

Хотя это и крупнейший телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим характеристикам, так как в мире существуют многозеркальные системы, превосходящие GTC по своей зоркости. О них и пойдёт речь далее..

Большой Бинокулярный Телескоп

Башня Большого Бинокулярного Телескопа. США. Аризона.

(Large Binocular Telescope — LBT) — расположен на горе Грэхем(высота 3,3 км.) в штате Аризона (США). Принадлежит Международной Обсерватории Маунт-Грэм. Его строительство обошлось в 120 млн. долл., деньги вложили США, Италия и Германия. LBT — это оптическая система из двух зеркал диаметром 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м. В 2004 году LBT «открыл один глаз», в 2005 было установлено второе зеркало. Но только с 2008 года он заработал в бинокулярном режиме и в режиме интерферометра.

Большой Бинокулярный Телескоп. Схема.

Центры зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа Хаббла. Общая площадь зеркал составляет 111 кв. м., то есть на целых 37 кв. м. больше, чем у GTC.

Конечно, если сравнивать LBT с многотелескопными системами, такими как телескопы Кека или VLT, которые могут работать в режиме интерферометра с большими, чем у LBT базами (расстоянием между компонентами) и, соответственно, давать ещё большее разрешение, то Большой Бинокулярный Телескоп уступит им по этому показателю. Но сравнивать интерферометры с обычными телескопами не совсем правильно, так как они не могут в таком разрешении давать фотографии протяжённых объектов.

Так как оба зеркала LBT посылают свет в общий фокус, то есть являются частью одного оптического прибора, в отличие от телескопов, о которых пойдёт речь дальше, плюс наличие у этого гигантского бинокля новейших систем активной и адаптивной оптики, то можно утверждать, что Большой Бинокулярный Телескоп — самый совершенный оптический прибор в мире на данный момент.

Телескопы Вильяма Кека

Башни телескопов Вильяма Кека. Гавайи.

Keck I и Keck II — ещё одна пара телескопов-близнецов. Место расположения — Гавайи, обсерватория Мауна-Кеа, на вершине вулкана Мауна-Кеа (высота 4139 м.), то есть там же где и японский телескоп «Субару» и «Джемини Север». Инаугурация первого Кека состоялась в мае 1993 года, второго — в 1996 г.

Зеркало телескопа Keck-2.

Диаметр главного зеркала каждого из них составляет 10 метров, то есть каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского, совсем немного уступая последнему по размеру, но превосходя его по «зоркости», благодаря возможности работать в паре, а так же более высокому расположению над уровнем моря. Каждый из них способен дать угловое разрешение до 0,04 угловой секунды, а работая вместе, в режиме интерферометра с базой 85 метров — до 0,005″.

Параболические зеркала этих телескопов составлены из з6 шестиугольных сегментов, каждый из которых снабжён специальной опорной системой, с компьютерным управлением. Первая фотография была получена ещё в 1990 году, когда у первого Кека было установлено всего 9 сегментов, это была фотография спиральной галактики NGC1232.

Очень Большой Телескоп

Очень Большой Телескоп. Чили.

Very Large Telescope (VLT). Расположение — гора Параналь (2635 м.) в пустыне Атакама в горном массиве чилийских Анд. Соответственно обсерваторию называют Паранальская, принадлежит она Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

Один из четырёх главных телескопов VLT.

VLT — это система из четырёх телескопов по 8,2 метра, и ещё четырёх вспомогательных по 1,8 метра. Первый из главных инструментов вступил в строй в 1999 году, последний — в 2002, позже — вспомогательные. После этого в течение ещё нескольких лет велись работы по настройке интерферометрического режима, инструменты соединялись сначала попарно, затем все вместе.

В настоящее время телескопы могут работать в режиме когерентного интерферометра с базой около 300 метров и разрешением до 10 микросекунд дуги. Так же, в режиме единого некогерентного телескопа, собирая свет в один приёмник по системе подземных туннелей, при этом светосила такой системы эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Естественно, каждый из телескопов может работать и отдельно, получая фотографии звёздного неба с экспозицией до 1 часа, на которых видны звёзды до 30-ой звёздной величины.

Вспомогательный телескоп. Первое прямое фото экзопланеты, рядом со звездой 2M1207 в созвездии Центавра. Получено на VLT в 2004 году.

Материально-техническое оснащение Паранальской обсерватории самое продвинутое в мире. Труднее сказать каких приборов для наблюдения за вселенной здесь нет, чем перечислить какие есть. Это спектрографы всевозможных типов, а так же приёмники излучения от ультрафиолетового до инфракрасного диапазона, так же всех возможных видов.

Как говорилось выше, система VLT может работать как единое целое, но это очень дорогостоящий режим, поэтому он используется редко. Чаще, для работы в интерферометрическом режиме каждый из больших телескопов работает в паре со своим 1,8 метровым помощником (Auxiliary Telescope — AT). Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «босса», занимая наиболее выгодное для наблюдения данного объекта положение.

Всё это делает VLT мощнейшей оптической системой в мире, а ESO — самой продвинутой астрономической обсерваторией в мире, это настоящий рай для астрономов. На VLT была сделана масса астрономических открытий, а так же невозможных до этого наблюдений, например, было получено первое в мире прямое изображение экзопланеты.

10 самых больших телескопов

10. Large Synoptic Survey Telescope

Диаметр главного зеркала: 8,4 метра

Местонахождение: Чили, пик горы Серо-Пачон, 2682 метра над уровнем моря

Тип: рефлектор, оптический

Хотя LSST будет располагаться в Чили, это проект США и его строительство целиком финансируют американцы, в том числе Билл Гейтс (лично вложил 10 миллионов долларов из необходимых 400).

Предназначение телескопа — фотографирование всего доступного ночного неба раз в несколько ночей, для этого аппарат оснащен 3,2 гигапиксельной фотокамерой. LSST выделяется очень широким углом обзора в 3,5 градуса (для сравнения – Луна и Солнце, как они видны с Земли, занимают всего 0,5 градуса). Подобные возможности объясняются не только внушающим диаметром главного зеркала, но и уникальностью конструкции: вместо двух стандартных зеркал LSST использует три.

Среди научных целей проекта заявлены поиск проявлений темной материи и темной энергии, картографирование Млечного пути, детектирование кратковременных событий вроде взрывов новых или сверхновых, а также регистрация малых объектов Солнечной системы вроде астероидов и комет, в частности, вблизи Земли и в Поясе Койпера.

Ожидается, что LSST увидит «первый свет» (распространенный на Западе термин, означает момент, когда телескоп впервые используется по прямому назначению) в 2020 году. На данный момент идет строительство, выход аппарата на полное функционирование запланирован на 2022 год.

Large Synoptic Survey Telescope, концепт / ©LSST Corporation

9. South African Large Telescope

Диаметр главного зеркала: 11 x 9,8 метров

Местонахождение: ЮАР, вершина холма недалеко от поселения Сутерланд, 1798 метров над уровнем моря

Тип: рефлектор, оптический

Самый большой оптический телескоп южного полушария располагается в ЮАР, в полупустынной местности недалеко от города Сутерланд. Треть из 36 миллионов долларов, необходимых для конструирования телескопа, вложило правительство ЮАР; остальная часть поделена между Польшей, Германией, Великобританией, США и Новой Зеландией.

Свой первый снимок SALT сделал в 2005 году, немногим после окончания строительства. Его конструкция довольно нестандартна для оптических телескопов, однако широко распространена среди поколения новейших «очень больших телескопов»: главное зеркало не едино и состоит из 91 шестиугольного зеркала диаметром в 1 метр, угол наклона каждого из которых может регулироваться для достижения определенной видимости.

Предназначен для проведения визуального и спектрометрического анализа излучения астрономических объектов, недоступных телескопам северного полушария. Сотрудники SALT занимаются наблюдениями квазаров, близких и далеких галактик, а также следят за эволюцией звезд.

Аналогичный телескоп есть в Штатах, он называется Hobby-Eberly Telescope и расположен в Техасе, в местечке Форт Дэвис. И диаметр зеркала, и его технология почти полностью совпадают с SALT.

South African Large Telescope / ©Franklin Projects

8. Keck I и Keck II

Диаметр главного зеркала: 10 метров (оба)

Местонахождение: США, Гавайи, гора Мауна Кеа, 4145 метров над уровнем моря

Тип: рефлектор, оптический

Оба этих американских телескопа соединены в одну систему (астрономический интерферометр) и могут работать вместе, создавая единое изображение. Уникальное расположение телескопов в одном из лучших мест на Земле с точки зрения астроклимата (степень вмешательства атмосферы в качество астрономических наблюдений) превратило Keck в одну из самых эффективных обсерваторий в истории.

Главные зеркала Keck I и Keck II идентичны между собой и подобны по своей структуре телескопу SALT: они состоят из 36 шестиугольных подвижных элементов. Оборудование обсерватории позволяет наблюдать небо не только в оптическом, но и в ближнем инфракрасном диапазоне.

Помимо основной части широчайшего спектра исследований, Keck является на данный момент одним из самых эффективных наземных инструментов в поиске экзопланет.

Keck на закате / ©SiOwl

7. Gran Telescopio Canarias

Диаметр главного зеркала: 10,4 метров

Местонахождение: Испания, Канарские острова, остров Ла Пальма, 2267 метров над уровнем моря

Тип: рефлектор, оптический

Строительство GTC закончилось в 2009 году, тогда же обсерватория и была официально открыта. На церемонию приехал даже король Испании Хуан Карлос I. Всего на проект было потрачено 130 миллионов евро: 90% профинансировала Испания, а остальные 10% поровну поделили Мексика и Университет Флориды.

Телескоп способен наблюдать за звездами в оптическом и среднем инфракрасном диапазоне, обладает инструментами CanariCam и Osiris, которые позволяют GTC проводить спектрометрические, поляриметрические и коронографические исследования астрономических объектов.

Gran Telescopio Camarias / ©Pachango

6. Arecibo Observatory

Диаметр главного зеркала: 304,8 метров

Местонахождение: Пуэрто-Рико, Аресибо, 497 метров над уровнем моря

Тип: рефлектор, радиотелескоп

Один из самых узнаваемых телескопов в мире, радиотелескоп в Аресибо не раз попадал в объективы кинокамер: к примеру, обсерватория фигурировала в качестве места финальной конфронтации между Джеймсом Бондом и его антагонистом в фильме «Золотой Глаз», а также в научно-фантастической экранизации романа Карла Сагана «Контакт».

Этот радиотелескоп попал даже в видеоигры – в частности, в одной из карт сетевого режима Battlefield 4, которая называется Rogue Transmission, военное столкновение между двумя сторонами происходит как раз вокруг конструкции, полностью скопированной с Аресибо.

Выглядит Аресибо действительно необычно: гигантская тарелка телескопа диаметром почти в треть километра помещена в естественную карстовую воронку, окруженную джунглями, и покрыта алюминием. Над ней подвешен подвижный облучатель антенны, поддерживаемый 18 тросами с трех высоких башен по краям тарелки-рефлектора. Гигантская конструкция позволяет Аресибо ловить электромагнитное излучение относительно большого диапазона – с длиной волны от от 3 см до 1 м.

Введенный в строй еще в 60-х годах, этот радиотелескоп использовался в бесчисленных исследованиях и успел помочь сделать ряд значительных открытий (вроде первого обнаруженного телескопом астероида 4769 Castalia). Однажды Аресибо даже обеспечил ученых Нобелевской премией: в 1974 году были награждены Халс и Тейлор за первое в истории обнаружение пульсара в двойной звездной системе (PSR B1913+16).

В конце 1990-х годов обсерватория также стала использоваться в качестве одного из инструментов американского проекта по поиску внеземной жизни SETI.

Arecibo Observatory / ©Wikimedia Commons

5. Atacama Large Millimeter Array

Диаметр главного зеркала: 12 и 7 метров

Местонахождение: Чили, пустыня Атакама, 5058 метров над уровнем моря

Тип: радиоинтерферометр

На данный момент этот астрономический интерферометр из 66 радиотелескопов 12-и и 7-метрового диаметра является самым дорогим действующим наземным телескопом. США, Япония, Тайвань, Канада, Европа и, конечно, Чили потратили на него около 1,4 миллиарда долларов.

Поскольку предназначением ALMA является изучение миллиметровых и субмиллиметровых волн, наиболее благоприятным для такого аппарата является сухой и высокогорный климат; этим объясняется расположение всех шести с половиной десятков телескопов на пустынном чилийском плато в 5 км над уровнем моря.

Телескопы доставлялись постепенно: первая радиоантенна начала функционировать в 2008 году, а последняя – в марте 2013 года, когда ALMA и был официально запущен на полную запланированную мощность.

Главной научной целью гигантского интерферометра является изучение эволюции космоса на самых ранних стадиях развития Вселенной; в частности, рождения и дальнейшей динамики первых звезд.

Радиотелескопы системы ALMA / ©ESO/C.Malin

4. Giant Magellan Telescope

Диаметр главного зеркала: 25,4 метров

Местонахождение: Чили, обсерватория Лас-Кампанас, 2516 метров над уровнем моря

Тип: рефлектор, оптический

Далеко к юго-западу от ALMA в той же пустыне Атакама строится еще один крупный телескоп, проект США и Австралии – GMT. Главное зеркало будет состоять из одного центрального и шести симметрично окружающих его и чуть изогнутых сегментов, образуя единый рефлектор диаметром более чем в 25 метров. Помимо огромного рефлектора, на телескоп будет установлена новейшая адаптивная оптика, которая позволит максимально устранить искажения, создаваемые атмосферой при наблюдениях.

Ученые рассчитывают, что эти факторы позволят GMT получать изображения в 10 раз более четкие, чем снимки Hubble, и вероятно даже более совершенные, чем у его долгожданного наследника – космического телескопа James Webb.

Среди научных целей GMT значится очень широкий спектр исследований – поиск и снимки экзопланет, исследование планетарной, звездной и галактической эволюции, изучение черных дыр, проявлений темной энергии, а также наблюдение самого первого поколения галактик. Рабочий диапазон телескопа в связи с заявленными целями – оптический, ближний и средний инфракрасный.

Закончить все работы предполагается к 2020 году, однако заявлено, что GMT может увидеть «первый свет» уже с 4 зеркалами, как только они окажутся введены в конструкцию. В данный момент идет работа по созданию уже четвертого зеркала.

Концепт Giant Magellan Telescope / ©GMTO Corporation

3. Thirty Meter Telescope

Диаметр главного зеркала: 30 метров

Местонахождение: США, Гавайи, гора Мауна Кеа, 4050 метров над уровнем моря

Тип: рефлектор, оптический

По своим целям и характеристикам TMT похож на GMT и гавайские телескопы Keck. Именно на успехе Keck и основан более крупный TMT с той же технологией разделенного на множество шестиугольных элементов главного зеркала (только в этот раз его диаметр в три раза больше), а заявленные исследовательские цели проекта почти полностью совпадают с задачами GMT, вплоть до фотографирования самых ранних галактик чуть ли не на краю Вселенной.

СМИ называют разную стоимость проекта, она варьируется от 900 миллионов до 1,3 миллиарда долларов. Известно, что желание участвовать в TMT выразили Индия и Китай, которые согласны взять на себя часть финансовых обязательств.

В данный момент выбрано место для строительства, однако до сих пор ведется противодействие некоторых сил в администрации Гавайев. Гора Мауна Кеа является священным местом для коренных гавайцев, и многие среди них категорически против строительства сверхкрупного телескопа.

Предполагается, что все административные проблемы уже очень скоро будут решены, а полностью завершить строительство планируется примерно к 2022 году.

Концепт Thirty Meter Telescope / ©Thirty Meter Telescope

2. Square Kilometer Array

Диаметр главного зеркала: 200 или 90 метров

Местонахождение: Австралия и Южная Африка

Тип: радиоинтерферометр

Если этот интерферометр будет построен, то он станет в 50 раз более мощным астрономическим инструментом, чем крупнейшие радиотелескопы Земли. Дело в том, что своими антеннами SKA должен покрыть площадь примерно в 1 квадратный километр, что обеспечит ему беспрецедентную чувствительность.

По структуре SKA очень напоминает проект ALMA, правда, по габаритам будет значительно превосходить своего чилийского собрата. На данный момент есть две формулы: либо строить 30 радиотелескопов с антеннами в 200 метров, либо 150 с диаметром в 90 метров. Так или иначе, протяженность, на которой будут размещены телескопы, будет составлять, согласно планам ученых, 3000 км.

Чтобы выбрать страну, где будет строиться телескоп, был проведен своего рода конкурс. В «финал» вышли Австралия и ЮАР, и в 2012 году специальная комиссия объявила свое решение: антенны будут распределены между Африкой и Австралией в общую систему, то есть SKA будет размещен на территории обеих стран.

Заявленная стоимость мегапроекта – 2 миллиарда долларов. Сумма разделена между целым рядом стран: Великобританией, Германией, Китаем, Австралией, Новой Зеландией, Нидерландами, ЮАР, Италией, Канадой и даже Швецией. Предполагается, что строительство будет полностью завершено к 2020 году.

Художественное изображение 5-километрового ядра SKA / ©SPDO/Swinburne Astronomy Production

1. European Extremely Large Telescope

Диаметр главного зеркала: 39.3 метра

Местонахождение: Чили, вершина горы Серро Армазонес, 3060 метров

Тип: рефлектор, оптический

Авторы проекта Thirty Meter Telescope заявляют, что их астрономический инструмент будет крупнейшим оптическим телескопом в мире.

На пару лет — возможно. Однако к 2025 году на полную мощность выйдет телескоп, который превзойдет TMT на целый десяток метров и который, в отличии от гавайского проекта, уже находится на стадии строительства. Речь идет о бесспорном лидере среди новейшего поколения крупных телескопов, а именно о Европейском очень большом телескопе, или E-ELT.

Его главное почти 40-метровое зеркало будет состоять из 798 подвижных элементов диаметром в 1,45 метра. Это вместе с самой современной системой адаптивной оптики позволит сделать телескоп настолько мощным, что он, по мнению ученых, сможет не только находить планеты, подобные Земле по размерам, но и сможет с помощью спектрографа изучить состав их атмосферы, что открывает совершенно новые перспективы в изучении планет вне солнечной системы.

Помимо поиска экзопланет, E-ELT займется исследованием ранних стадий развития космоса, попробует измерить точное ускорение расширения Вселенной, проверит физические константы на, собственно, постоянство во времени; также этот телескоп позволит ученым глубже чем когда-либо погрузиться в процессы формирования планет и их первичный химический состав в поисках воды и органики – то есть, E-ELT поможет ответить на целый ряд фундаментальных вопросов науки, включая те, что затрагивают возникновение жизни.

1. “Субару”

Телескоп “Субару” расположен на вершине вулкана Мауна-Кеа (Гавайи) и работает вот уже четырнадцать лет. Это телескоп-рефлектор, выполненный по оптической схеме Ричи – Кретьена с главным зеркалом гиперболической формы. Для минимизации искажений его положение постоянно корректирует система из двухсот шестидесяти одного независимого привода. Даже корпус здания имеет особую форму, снижающую негативное влияние турбулентных потоков воздуха.

Телескоп “Субару” (фото: naoj.org).

Обычно изображение с подобных телескопов недоступно непосредственному восприятию. Оно фиксируется матрицами камер, откуда передаётся на мониторы высокого разрешения и сохраняется в архив для детального изучения. “Субару” примечателен ещё и тем, что ранее позволял вести наблюдения по старинке. До установки камер был сконструирован окуляр, в который смотрели не только астрономы национальной обсерватории, но и первые лица страны, включая принцессу Саяко Курода – дочь императора Японии Акихито.

Сегодня на “Субару” может быть одновременно установлено до четырёх камер и спектрографов для наблюдений в диапазоне видимого и инфракрасного света. Самая совершенная из них (HSC) была создана компанией Canon и работает с 2012 года.

Схема Hyper-Suprime Cam (изображение: HSC Project/NAOJ).

Камера HSC проектировалась в Национальной астрономической обсерватории Японии при участии множества партнерских организаций из других стран. Она состоит из блока линз высотой 165 см, светофильтров, затвора, шести независимых приводов и CCD матрицы. Её эффективное разрешение составляет 870 мегапикселей. Используемая ранее камера Subaru Prime Focus обладала на порядок меньшим разрешением – 80 мегапикселей.

Поскольку HSC разрабатывалась для конкретного телескопа, диаметр её первой линзы составляет 82 см – ровно в десять раз меньше диаметра главного зеркала “Субару”. Для снижения шумов матрица установлена в вакуумной криогенной камере Дьюара и работает при температуре -100 °С.

Телескоп “Субару” удерживал пальму первенства вплоть до 2005 года, когда завершилось строительство нового гиганта – SALT.

5. LSST

Поколение больших телескопов с диаметром главного зеркала до десяти метров заканчивается. В рамках ближайших проектов предусмотрено создание серии новых с увеличением размеров зеркал в два–три раза. Уже в следующем году в северной части Чили запланировано строительство широкоугольного обзорного телескопа-рефлектора Large Synoptic Survey Telescope (LSST).

LSST – Большой обзорный телескоп (изображение: lsst.org).

Ожидается, что он будет обладать самым большим полем зрения (семь видимых диаметров Солнца) и камерой с разрешением 3,2 гигапикселя. За год LSST должен делать более двухсот тысяч фотографий, общий объём которых в несжатом виде превысит петабайт.

Основной задачей станут наблюдения за объектами со сверхслабой светимостью, включая астероиды, угрожающие Земле. Запланированы также измерения слабого гравитационного линзирования для обнаружения признаков тёмной материи и регистрация кратковременных астрономических событий (таких как взрыв сверхновой). По данным LSST предполагается строить интерактивную и постоянно обновляемую карту звёздного неба со свободным доступом через интернет.

При надлежащем финансировании телескоп будет введён строй уже в 2020 году. На первом этапе требуется $465 млн.

8. E-ELT

Европейский чрезвычайно большой телескоп (E-ELT) сегодня выглядит наиболее привлекательным по соотношению возможностей и затрат. Проектом предусмотрено его создание в пустыне Атакама в Чили к 2018 году. Текущая стоимость оценивается в $1,5 млрд. Диаметр главного зеркала составит 39,3 метра. Оно будет состоять из 798 шестиугольных сегментов, каждое из которых – около полутора метров в поперечнике. Система адаптивной оптики будет устранять искажения при помощи пяти дополнительных зеркал и шести тысяч независимых приводов.

Европейский чрезвычайно большой телескоп – E-ELT (фото: ESO).

Расчётная масса телескопа составляет более 2800 тонн. На нём будет установлено шесть спектрографов, камера ближнего ИК-диапазона MICADO и специализированный инструмент EPICS, оптимизированный для поиска планет земного типа.

Основной задачей коллектива обсерватории E-ELT станет детальное исследование открытых к настоящему времени экзопланет и поиск новых. В качестве дополнительных целей указывается обнаружение признаков наличия в их атмосфере воды и органических веществ, а также изучение формирования планетарных систем.

Оптический диапазон составляет лишь малую часть электромагнитного спектра и обладает рядом свойств, ограничивающих возможности наблюдения. Многие астрономические объекты практически не обнаруживаются в видимом и ближнем инфракрасном спектре, но при этом выдают себя за счёт радиочастотных импульсов. Поэтому в современной астрономии большая роль отводится радиотелескопам, размер которых напрямую влияет на их чувствительность.

10. ALMA и SKA

Атакамская большая миллиметровая/субмиллиметровая решётка (ALMA) представляет собой массив из параболических антенн диаметром до 12 метров и массой более ста тонн каждая. К середине осени 2013 года число антенн, объединённых в единый радиоинтерферометр ALMA, достигнет шестидесяти шести. Как и у большинства современных астрономических проектов, стоимость ALMA превышает миллиард долларов.

Радиотелескопы обсерватории ALMA (фото: W. Garnier / ALMA / ESO).

Квадратная километровая решётка (SKA) – другой радиоинтерферометр из массива праболических антенн, расположенных в Южной Африке, Австралии и Новой Зеландии на общей площади около одного квадратного километра.

Антенны радиоинтерферометра “Квадратная километровая решётка” (фото: stfc.ac.uk).

Его чувствительность примерно в пятьдесят раз превосходит возможности радиотелескопа обсерватории Аресибо. SKA способен уловить сверхслабые сигналы от астрономических объектов, расположенных на удалении 10–12 млрд световых лет от Земли. Начать первые наблюдения планируется в 2019 году. Проект оценивается в $2 млрд.

Несмотря на огромные масштабы современных телескопов, их запредельную сложность и многолетние наблюдения, исследование космоса только начинается. Даже в Солнечной системе до сих пор обнаружена лишь малая часть объектов, заслуживающих внимания и способных повлиять на судьбу Земли.

>Самые большие телескопы в мире

0:03 24/10/2017 0 👁 5 542

Большой телескоп азимутальный (БТА)

Большой Телескоп Азимутальный (БТА)

У подножья горы Пастухова на горе Семиродники в Специальной астрофизической обсерватории (САО) установлен Большой Телескоп Азимутальный. Его также по-простому называют – БТА. Этот телескоп находится на высоте 2070 метров над уровнем моря и по принципу действия является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 605 см и имеет параболическую форму. Фокусные расстояние главного зеркала – 24 метра. БТА является крупнейшим телескопом в Евразии. В настоящее время Специальная астрофизическая обсерватория является крупнейшим российским астрономическим центром наземных наблюдений за Вселенной.

Возвращаясь к телескопу БТА стоит упомянуть несколько весьма впечатляющих цифр. Так, например, вес главного зеркала телескопа без учета оправы составляет 42 тонны, масса подвижной части телескопа — около 650 тонн, а общая масса всего телескопа БТА — около 850 тонн! В настоящее время телескоп БТА имеет несколько рекордов, относительно других телескопов на нашей планете. Так, главное зеркало БТА является крупнейшем в мире по массе, а купол БТА является крупнейшим астрономическим куполом в мире!

Большой Канарский телескоп (GTC)

Большой Канарский телескоп (GTC)

В поисках следующего телескопа мы отправляемся в Испанию, на Канарские острова, а если быть совсем точнее, то на остров Ла Пальма. Здесь на высоте 2267 метров над уровнем моря расположен Большой Канарский телескоп (GTC). Этот телескоп был построен в 2009 году. Как и телескоп БТА, Большой Канарский телескоп (GTC) по принципу действия является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 10,4 метра.

Большой Канарский телескоп (GTC) может наблюдать за звездным небом в оптическом и в среднем инфракрасном диапазоне. Благодаря инструментам Osiris и CanariCam он может проводить поляриметрические, спектрометрические и коронографические исследования космических объектов.

Большой Южно-африканский телескоп (SALT)

Большой Южно-африканский телескоп (SALT)

Далее мы отправляемся на Африканский континент, а точнее – в Южно-Африканскую республику. Здесь на вершине холма, в полупустынной местности близ деревушки Сутерланд на высоте 1798 метров над уровнем моря расположен Большой Южно-африканский телескоп (SALT). Как и предыдущие телескопы, по принципу действия Большой Южно-африканский телескоп (SALT) является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 11 метров. Любопытно, но данный телескоп не является крупнейшим в мире, однако, Большой Южно-африканский телескоп (SALT) на сегодняшний день – самый большой телескоп южного полушария. Главное зеркало данного телескопа – это не цельный кусок стекла. Главное зеркало состоит из 91 шестиугольного элемента, каждый из которых имеет диаметр в 1 метр. Для улучшения качества изображения все отдельные сегментные зеркала могут регулироваться по углу. Таким образом, достигается точнейшая форма. Сегодня, такая технология строения главных зеркал (набор отдельных подвижных сегментов) получила широкое распространение при строительстве крупных телескопов.

Большой Южно-африканский телескоп (SALT) был создан для спектрометрического и визуального анализа излучения, исходящего от астрономических объектов, находящихся вне поля видимости телескопов, расположенных в северном полушарии. В настоящее время данный телескоп обеспечивает наблюдение за квазарами, дальними и близкими галактиками, а также отслеживает эволюцию звезд.

Большой бинокулярный телескоп (LBT)

Большой бинокулярный телескоп (LBT)

Пришло время отправиться на противоположную часть Земли. Наша следующая цель – гора Грэхем, которая находится в юго-восточной части штата Аризона (США). Здесь на высоте 3300 метров расположен один из наиболее технологически передовых и обладающих наивысшим разрешением оптических телескопов в мире! Знакомьтесь – это Большой бинокулярный телескоп! Название уже говорит само за себя. Данный телескоп обладает двумя главными зеркалами. Диаметр каждого зеркала составляет 8,4 метра. Как и в простейшем бинокле, зеркала Большого бинокулярного телескопа установлены на общем креплении. Благодаря бинокулярному устройству данный телескоп по своей светосиле эквивалентен телескопу с одним зеркалом диаметром 11,8 метра, а его разрешающая способность эквивалентна телескопу с одним зеркалом диаметром 22,8 метра. Здорово, не правда ли?!

Телескоп является частью международной обсерватории Маунт-Грэм. Это совместный проект Аризонского университета и Арчетрийской астрофизической обсерватории во Флоренции (Италия). С помощью своего бинокулярного устройства Большой Бинокулярный Телескоп получает очень детальные изображения далеких объектов, давая необходимую наблюдательную информацию для космологии, внегалактической астрономии, физики звёзд и планет и решает многочисленные астрономические вопросы. Первый свет телескоп увидел 12 октября 2005 года, запечатлев объект NGC 891 в созвездии Андромеды.

Телескопы Вильяма Кека (Keck Observatory)

Телескопы Вильяма Кека (Keck Observatory)

Теперь мы отправляемся на знаменитейший остров вулканического происхождения – Гавайи (США). Одна из самых известных гор – Мауна-Кеа. Здесь нас встречает целая обсерватория – телескопы имени Вильяма Кека (Keck Observatory). Данная обсерватория расположена на высоте 4145 метров над уровнем моря. И если у предыдущего большого бинокурярного телескопа имелось два главных зеркала, то в обсерватории Кека мы имеем два телескопа! Каждый из телескопов может работать по отдельности, но телескопы также могут работать совместно в режиме астрономического интерферометра. Это возможно благодаря тому, что телескопы “Кек I” и “Кек II” находятся на расстоянии около 85 метров друг от друга. При таком использовании они имеют разрешение, эквивалентное телескопу с 85-метровым зеркалом. Общая масса каждого телескопа составляет приблизительно 300 тонн.

Как телескоп “Кек I”, так и телескоп “Кек II” имеют главные зеркала, которые выполнены по системе Ричи-Кретьена. Главные зеркала состоят из 36 сегментов, которые образуют отражательную поверхность, диаметр которой равен 10 метрам. Каждый такой сегмент оборудован специальной системой поддержки и наведения, а также системой, защищающей зеркала от деформации. Оба телескопа оборудованы адаптивной оптикой для компенсации атмосферных искажений, которая позволяет получить более качественное изображение. Наибольшее количество экзопланет открыто именно в этой обсерватории с помощью спектрометра высокого разрешения. Открытие новых экзопланет, этапы зарождения и эволюции нашей Солнечной системы изучает данная обсерватория в настоящее время!

Телескоп “Субару”

Телескоп “Субару”

На горе Мауна-Кеа, помимо обсерватории Кека, нас встречает и телескоп «Субару». Данная обсерватория расположена на высоте 4139 метров над уровнем моря. Любопытно, но название телескопа как никогда космическое! Все дело в том, что Субару в переводе с японского языка означает Плеяды! Строительство телескопа было начало в далеком 1991 году и продолжилось до 1998 года, а уже в 1999 году телескоп «Субару» заработал в полную силу!

Как многие известные телескопы мира, «Субару» по принципу действия является телескопом-рефлектором. Главное зеркало данного телескопа имеет диаметр 8,2 метра. В 2006 году на данном телескопе «Субару» была применена система адаптивной оптики с лазерной гидирующей звездой. Это позволило увеличить угловое разрешение телескопа в 10 раз. Спектрограф Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), установленный на телескопе «Субару», предназначен для обнаружения экзопланет, исследования их света с целью установления размера планет, а также газов преобладающих в их атмосферах.

Телескоп Хобби-Эберли

Телескоп Хобби-Эберли

Теперь мы отправляемся в штат Техас Соединенных Штатов Америки. Здесь расположена обсерватория МакДональда. В этой обсерватории расположен телескоп «Хобби-Эберли». Телескоп назван в честь бывшего губернатора Техаса Билла Хобби и Роберта Эберли, благодетеля из штата Пенсильвания. Телескоп расположен на высоте 2026 метров над уровнем моря. Телескоп был запущен в эксплуатацию в 1996 году. Главное зеркало, как и на телескопах Кека, состоит из 91 отдельных сегментов и имеет общий диаметр 9,2 метра. В отличие от многих крупных телескопов в телескопе «Хобби-Эберли» применены дополнительные и уникальные функции. Одной из таких функций можно назвать отслеживание объекта путем перемещения инструментов в фокусе телескопа. Это обеспечивает доступ к 70-81% неба и позволяет отслеживать один астрономический объект до двух часов.

Телескоп «Хобби-Эберли» широко используется для изучения космоса, начиная с нашей Солнечной системы и заканчивая звёздами в нашей галактике и для изучения остальных галактик. Телескоп «Хобби-Эберли» успешно используется и для поиска экзопланет. Используя низкую разрешающую способность спектрографа, телескоп «Хобби-Эберли» используется для идентификации суперновых для измерения ускорения Вселенной. У данного телескопа есть и «визитная карточка», отличающая этот телескоп от остальных! Рядом с телескопом имеется башня, которая называется центром кривизны выравнивания зеркал. Эта Башня используется для калибровки отдельных сегментов зеркала.

Очень большой телескоп – Very Large Telescope (VLT)

Очень большой телескоп – Very Large Telescope (VLT)

И в завершение рассказа о крупнейших телескопах мира мы отправляемся в Южную Америку, где в Республике Чили на горе Серро Параналь расположен Очень Большой телескоп (VLT). Да, да! Телескоп так и называется – «Очень Большой телескоп»! Дело в том, что данный телескоп состоит сразу из 4 телескопов, каждый из которых имеет диаметр апертуры в 8,2 метра. Телескопы могут работать как раздельно друг от друга, выполняя съёмку с часовой выдержкой, так и совместно, позволяя увеличить разрешение для ярких объектов, а также для увеличения светимости слабых или сильно удалённых объектов.

«Очень Большой телескоп» был построен Европейской Южной Обсерваторией (ESO). Этот телескоп находится на высоте 2635 метров над уровнем моря. «Очень Большой телескоп» способен производить наблюдения волн разного диапазона — от ближнего ультрафиолетового до среднего инфракрасного. Наличие системы адаптивной оптики позволяют телескопу практически полностью исключить влияние турбулентности атмосферы в инфракрасном диапазоне. Это позволяет получить в этом диапазоне изображения в 4 раза более чёткие, чем телескоп Хаббла. Для интерферометрических наблюдений используются четыре вспомогательных 1,8-метровых телескопа способных передвигаться вокруг основных телескопов.

Вот такие вот они – самые крупные телескопы в мире! К не названным телескопам можно отнести два восьмиметровых телескопа «Джемини-Север» и «Джемини-Юг» на Гавайях и в Чили, принадлежащие Обсерватории Джемини, 5-метровый рефлектор имени Джорджа Хейла в Паломарской обсерватории, 4,2-метровый альт-азимутальный отражательный телескоп Вильяма Гершеля, входящий в группу Исаака Ньютона в Обсерватории дель Рок де лос Мучачос (Ла-Пальма, Канарские острова), 3,9-метровый Англо-Австралийский телескоп (AAT), находящийся в Обсерватории Сайдинг-Спринг (штат Новый Южный Уэльс, Австралия), 4-метровый оптический отражательный телескоп имени Николаса Майолла в Национальной обсерватории Китт-Пик, принадлежащей к Национальным оптическим астрономическим обсерваториям США и некоторые другие.

Среди радиотелескопов на сегодняшний день самыми выдающимися и широко известными являются радиотелескоп «Аресибо» в Пуэрто-Рико, сеть радиотелескопов «Atacama Large Millimeter Array» в пустыне Атакама Республики Чили, «РАТАН-600», расположенный в Карачаево-Черкесии, 500-метровый радиотелескоп «FAST», расположенный в Китае, радиотелескоп Паркс (The Parkes Radio Telescope) в обсерватории Паркс, Австралия.

БТА телескоп — крупнейший оптический телескоп в Евразии, самый большой телескоп в России. Полное название и расшифровка аббревиатуры звучит так — Большой Телескоп Альт-Азимутальный.

Диаметр зеркала — 6 метров.

Установлен у подножия горы Пастухова на высоте 2070 м над уровнем моря. Карачаево-Черкессия. Работает еще с 1966 года.

В далеком 1975 году телескоп считался крупнейшим в мире, превзошедший по своим параметрам и техническим возможностям телескоп Хейла в Паломарской обсерватории (Калифорния). Но в 1993 году пальму первенства, если так можно выразиться, отобрал десятиметровый телескоп американской Обсерватории Кека, расположившийся на пике горы Мауна-Кеа (4145 метров над уровнем моря), на острове Гавайи. И неудивительно, при таких средствах вложенных в проект (более 70 млн $), по астрономическим меркам получился настоящий гигант в научных исследованиях космоса.

Спрашивается, почему Россия позволила американцам (или как только мы не привыкли их называть), в этом вопросе быть дальновидней наших проектов и разработок? Почему советские разработки и мегапроекты были лучшими во всем мире, а проекты постсовесткой эпохи только-только набирают обороты, поднимаясь с колен? Благо хоть поднимаются. Однако, не припоминаю, чтобы в роснауке было столько благотворительных фондов или меценатов-добродетелей, как в штатах. А ведь, могли бы потрясти какую-нибудь кучку олигархов с их миллиардами… Суммы-то не ахти какие запредельные, учитывая роскошные виллы и яхты, острова и другие бессмысленные инвестиции некоторых из русских представителей «сильные мира сего»…

К слову, американцы в 1985 году привлекли к работе средства благотворительного фонда Уильяма Майрона Кека, который, собственно и профинансировал весь проект солидным чеком в более 70 млн $. Фонд основанный в 1954 году Уильямом Майроном Кеком (1880—1964) и сегодня специализируется поддержкой научных открытий и новых технологий. И вот, что у них получилось:

Обсерватория Кека

Тем не менее, возвращаясь к нашему телескопу, БТА оставался телескопом с крупнейшим в мире монолитным зеркалом вплоть до 1998 года. Но самая любопытная информация, вошедшая в перечень офигенно крутых — по сей день купол БТА является крупнейшим астрономическим куполом в мире. Ну, хоть Купол (!) у нас — лучший в мире.

Чтобы правильно меня понимали — нет целей и задач одними восторгаться, а своих поливать псевдогрязью… Нет! Хочется, чтобы по-людски было, чтобы в науку вкладывали больше, чем в вооружение, больше, чем в «приоритетные» разборки с трубами от Газпрома, выясняя какой поток лучше — северный, южный или еще какой… Хочется, чтобы вкладывали больше, чем другие государства. И, быть может ученые никуда уезжать не станут? — А что? Верить-то хочется…

Итак, телескоп БТА — как одно из самых значимых изобретений, гордость советских ученых и инженеров достался России, как правопреемнице СССР. Что нам не мешало бы знать о нем? Постарался найти и сжать информацию до более-менее перевариваемой, и интересной.

1. ЛЫТКАРИНСКОЕ ОПТИЧЕСКОЕ СТЕКЛО

В мире только пять стран, которые могут производить весь спектр оптического стекла: Россия, Германия, Китай, США и Япония. Лыткаринский завод известен, прежде всего, своей крупногабаритной оптикой. Его зеркала установлены на крупнейших телескопах по всему миру. Одно из таких зеркал завода и установлено на телескопе БТА, что собственно и позволило получить звание сразу в двух номинациях — «самое большое зеркало в Евразии» и «самый большой телескоп в Евразии»…Одно дополняет другое.

Чуть не забыл, вес зеркала — чуть более 40 тонн. При том, что масса подвижной части телескопа — около 650 тонн, а общая масса телескопа — около 850 тонн.

Была информация, что в 2015-м году зеркало должны были поменять на обновленное — весом в 75 тонн, но информации о проделанной работе за прошлый год я не нашел, даже на официальном сайте Лыткаринского завода. Сообщалось только, что должны это сделать:

«В следующем году (прим ред — в 2015г), в мае, мы будем отгружать 75-тонное зеркало для большого азимутального телескопа. По технологии такое зеркало после выплавки должно остужаться полтора года. Это самое крупное зеркало, изготовленное для телескопа, станок для его полировки на Лыткаринском заводе оптического стекла в высоту составляет чуть ли не 12 этажей», — сообщил генеральный директор холдинга «Швабе» — Сергей Максин на международной выставке «Оборонэкспо».

Фото: архив САО РАН

2. В чем уникальность

По техническим меркам в 60-70 гг — разработка считалась революционной. Аналогов проекту не было. Механика телескопа послужила прототипом для всех последующих телескопов. Все телескопы, даже меньшего размера, стали делать по образцу БТА.

Кстати, название телескопа было предопределено. Ведь — телескоп не статический, у него две оси — вертикальная и горизонтальная. Они позволяют поворачивать конструкцию по оси и по азимуту. Отсюда и название — Большой Телескоп Альт-Азимутальный.

В советское время, помимо огромного штата сотрудников из несколько сотен человек, за работой телескопа также следил огромнейший крупногабаритный компьютер, который сейчас стоит в музее обсерватории. Со временем, датчики, систему управления модернизировали, а механика осталась. Советские технологии — это Вам не хухры-мухры… Делали на века.

3. Штат сотрудников

Со слов астронома Алексея Моисеева, сейчас в обсерватории трудятся около 400 человек.

«…у нас один из самых высоких процентов ненаучного состава среди институтов Российской академии наук — инженеров, техников. У нас два основных телескопа: шестиметровый БТА и радиотелескоп «Ратан-600». Нужны люди, чтобы их обслуживать. У нас время простоя телескопов по техническим причинам измеряется всего лишь часами в год — это очень мало.

К слову, недалеко от обсерватории был построен академгородок, где сегодня живут около 1200 человек — ученые с семьями. Несмотря на протесты против строительства городка со стороны первого директора обсерватории — Ивана Копылова, решено было строить. А протест заключался в следующем — астрономы не геологи, не нужно заставлять их работать вахтовым методом.

Сегодня одна из самых больших проблем академгородка — медицинское обслуживание. Как оказалось, в результате реформы РАН в 2015 году, Федеральное агентство научных организаций отказывается поддерживать местную амбулаторию, а до ближайшей больницы — 30 км горной дороги. Вопрос — с ума сошли? С одной стороны поднимаете вопросы — отчего такая большая утечка мозгов, с другой стороны — сами же выпихиваете из страны такими условиями…

Это аксиома: в любой стране мира астроном с хорошими знаниями и подготовкой может найти множество сфер, где он заработает больше, чем в науке. На энтузиазме и бестолковых реформах страна не перейдет на новый уровень…

В завершении, рекомендую полистать интересную статью с большим количеством качественных снимков о телескопе БТА. А также рекомендую к просмотру короткий видеоролик от «Телестудии Роскосмоса». Там же — на канале Роскосмоса, очень много интересных видео обзоров — для самых любознательных. А пока что — короткий факты о телескопе БТА:

Leave a Comment